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Abstract

An approximation to the UNESCO equation of state for sea water is obtained in
the form of a polynomial that is cubic in potential temperature, quadratic in pressure,
and linear in salinity. The polynomial represents a reasonable compromise between ac-
curacy and computational economy; it also allows potential temperature to be obtained

analytically from given values of density, salinity and pressure.



1 Introduction

The equation of state for sea water, which links density (p) to temperature (7°), salinity (S),
and pressure (p), is a rather complex mathematical expression. For example, the formula of
Millero et al. (1980), usually referred to as the UNESCO formula, involves a 26-term poly-
nomial of 4" degree in T, 2"¢ degree in p, and of 1.5 degree in S. The high computational
burden placed by this equation on numerical ocean circulation models has spawned attempts
to approximate the “exact” equation by simpler formulae. The present paper represents one

such attempt.

In isopycnic ocean modeling and data analysis, the need frequently arises to diagnose
temperature (or salinity) for given values of density, pressure, and salinity (or temperature, as
the case may be). In principle, this can be done by solving the UNESCO formula iteratively.
Experience shows, however, that systematic errors inherent in iterative methods, no matter
how small, will accumulate over time if the numerical algorithm in an ocean model calls for
evaluation of both p(T,S,p) and T'(p, S,p) at each model time step, that is, if the equation

of state is solved back and forth many times.

Bryan and Cox (1972) simplified the density calculation by expressing density anomalies
at fixed depth levels by a 3" degree polynomial in 7" and S. Friedrich and Levitus (1972,
hereafter FL) fitted a polynomial cubic in T, quadratic in depth, and linear in S to the
Knudsen-Ekman formula (Forsch et al., 1902; Ekman, 1908). The FL formula simplifies the
equation of state to the point where T'(p, S, p) and/or S(p, T, p) can be obtained analytically,
thus avoiding the accumulation of numerical biases in back-and-forth applications like those
necessary in isopycnic models. Levitus and Isayev (1992, hereafter LI) updated FL (1972)
by fitting the same polynomial to the UNESCO equation of state.

Both the Knudsen-Ekman and the UNESCO formula use in situ temperature as one of
the variables, while in many oceanographic applications potential temperature (6) is used due
to its entropy-conserving properties. The error introduced by not distinguishing between T’
and 6 in the equation of state are not negligible, as pointed out by Mellor (1991). He estimated

this difference and gave a correction formula. More recently, Jackett and McDougall (1995,



hereafter JMcD) modified the UNESCO formula so that it is written directly in terms of 6
instead of T'.

In this paper, we combine the approaches taken by JMcD and LI. Specifically, we gen-
erate a polynomial in €, S, and p representing a best fit to the UNESCO equation of state.
This polynomial is intended for use in ocean models where computational expense is an issue,
where 6 replaces T as the variable describing the temperature field, and where the equation

of state must be invertible, i.e., must be solvable for # as a function of p, S, p.

2 Two-stage procedure used to fit the JMcD formula

The JMcD formula is of the form

p(8,S,0)

PO = T K. S ) "

where p(0,5,0) = p(T,S,0) (since # =T at p = 0) is a 15-term equation in powers of S and
T, and K (0, S,p) is a 26-term equation in powers of §, S, and p.

Following FL and LI, we approximate (1) by a seven-term polynomial cubic in 6 and

linear in S:
a(0,8,p) = Ci(p) + Cx(p)0 + C3(p)S + Cy(p)8? + Cs(p) SO + Cs(p)0® + C7(p)SH?,  (2)

where 0 = p - 1000 kgm 3.

The potential temperature, salinity and pressure ranges used in this fit are shown in
Table 1. Note that we fit a single polynomial (2) over a depth-independent range of # and S
to assure accurate calculation of surface water potential density referenced to greater depths.
(Again, this is a special concern in isopycnic modeling.) In contrast, both FL and LI narrowed
the temperature and salinity range considerably at depths, and FL reduced the number of
terms in (2) from seven to five there. Using different polynomials at different depths is safe
in models whose coordinate surfaces are at fixed depth levels but is inappropriate in models

where pressure on individual coordinate surfaces varies continually in space and time.



The coefficients C;_ ;7 were determined in a manner closely following FL. and LI: In the
first stage, a least-squares fit of o(6,S,p) in (2) to the JMcD formula (1) was carried out
over the prescribed range of § and S shown in Table 1 for discrete values of p ranging from 0
to 50 MPa in increments of 1 MPa (approximately 0 to 5000 m in increments of 100 m). This
yielded 50 values for each Cly, corresponding to 50 discrete pressure levels. In the second
stage, a quadratic polynomial in p was fitted to each of these sets of 50 values, resulting in

expressions

Cn(p) = an + Byp + Yvp° (N=1,..,7). (3)
The coefficients returned by the fit are given in Table 2.

We also did a fit over a wider potential temperature and salinity range shown in Table 3
in order to cover extreme temperatures and make the formula applicable in brackish water.

The corresponding coefficients (:*1,.,7 are given in Table 4.

The fit was performed using the software package Mathematica (Wolfram, 1991). We
solved for the coefficients C;_; of (2) that minimize the integral of the squared difference
between the exact and approximate functions. The integral is taken over the given range of

0 and S, at a fixed value of p, called py below:

S2 92
/51 /01 [0(97 Sa pU) - ,0(9, S, pg)]ZdS df = min . (4)

To find the minimum in the space of the seven Cy’s, we take the derivative with respect to

each C'y and set the resulting expression to zero:

Sa 62 )
vCl...7 / / [0(97 Sa pO) - P(e, S, po)] dS' dg — 0 (5)
S1 91

Since only o(6, S, py) depends on Cy, this can be written as:

/5?2 /9102 2[0(9’ S’ po) - p(97 57 po)][vcl...70(97 Sa po)]dS df = 0. (6)

We use Mathematica to evaluate the integral numerically, and then solve the resulting set of
linear equations for the coefficients C'y. After this is done for all 50 values of p, a quadratic

is fitted to each set of (p, C'y) points to obtain the coefficients ay, By, and yy.



—2°C' <0 <30°C 30% <S<38% 0<p<50MPa

Table 1: “Narrow” range of variables used for polynomial fit.

N ay Bn YN

-1.36471x10° 1 5.06423x10°  -5.52640x10*
4.68181x1072 -3.57109x1073  4.88584x10~°
8.07004x 107" -8.76148x10~* 9.96027x10~7
-7.45353x1073  5.25243x10°° -7.25139x10°8
-2.94418x107%  1.57976x107° -3.98736x 107"
3.43570x107° -3.46686x10~7 4.00631x10~'
3.48658x107° -1.68764x107 8.26368x10 M

N O Ot ks W Ny

Table 2: Coefficients of the approximation Cy(p) = ay + Byp + Ynp? [p in MPa] resulting

from the two-stage least-squares fitting procedure over the 6, S, p range shown in Table 1.



Y
Wn
=1

—2°C' < 0 <40°C 0% < S <42% 0 < p < 100MPa

Table 3: A wider range of variables for polynomial fit.

N ay By IN
1 -9.20601x10"2 5.07043x10~' -5.43283x10~*

5.10768x 1072 -3.69119x1073 6.54837x10°
8.05999x10° 1  -9.34012x10"* 1.38777x10°°
7408491073 5.33243x107°  -1.01563x10~7

3.32267x10°° -3.25887x10° 7 4.98612x 1010

2
3
4
5 -3.01036x107% 1.75145x107° -2.34892x10°8
6
7 3.21931x107°  -1.65849x1077 2.17612x10~10

Table 4: Same as Table 2, but based on the wide #, .S, p range shown in Table 3.



3 Results

To convey an impression of the accuracy of the fit, we show in Fig.1 the density anomaly
o = p-1000kgm as a function of # and S at three pressure levels (0, 20, and 40 MPa,
referred to as op, 09, and o4 respectively), using Table 2 and Table 4 respectively. Since
the isopycnals obtained from the JMcD formula (1) and from the approximation (2) are
indistinguishable in these plots, we plot the difference between (2) and (1) as dashed lines.
In Fig. 1(a), the difference is of order 1073 kg m 2, four orders of magnitude smaller than the
density anomaly (o) itself. The maximum error is 0.0065 kgm™3. A check value for density
computed using (2) and Table 2 is o(f = 1°C, S = 35,p = 50 MPa) = 50.402762 kgm™>. A
much bigger difference is shown in Fig. 1(b) due to the wider fitting range.

The coefficients C;_ 7 in (2) determined at various pressure levels using Table 2 are
plotted in Fig. 2. Their almost linear variation with pressure indicates that a quadratic fit in
p is sufficient in (3). The root-mean-square (rms) of the difference of (2) and (1), when using
Table 2, lies between 2.67 x 1072 kgm 3 at the surface and 1.85 x 1072 kgm 2 at 50 MPa,
which at most depths is smaller than the rms error shown in LI. Consistent with the results
presented in Fig. 1, the rms error using Table 4 is much larger, since the latter formula is a
fit over a much wider range of #,.S, p. Thus, while fairly reproducing the density of brackish
and extremely warm/salty water, this formula sacrifices accuracy in the water masses that

make up the bulk of the world ocean.

In summary, the coefficients given in Table 2 are recommended for use in global and
basin-scale circulation modeling where infusions of fresh water and localized temperature
extremes play only a minor role. Estuarine and/or marginal sea models may require use of

the coefficients given in Table 4.
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Figure 1: 09, 09, and o5 (kgm?) in #-S diagram. (a) using Table 2; (b) using Table 4. Solid:

JMcD formula (1); dashed: (2) minus JMcD formula.
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Figure 2: Coefficients in (2) as functions of pressure, based on narrow 6, S, p range in Table 1.

pressure

Figure 3: Rms error of (2) with respect to JMcD formula as function of pressure. Solid: coef-
ficients in Table 2 evaluated in the narrow 6, S, p range shown in Table 1; dashed: coefficients

in Table 4 evaluated in the wide #,.5, p range shown in Table 3.
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